GMI Computing Update

Tom Clune SIVO - Code 610.3

Discover

New NCCS Cluster: Discover

- General replacement for alpha cluster (halem)
 - Primary workhorse for GMI for several years
 - Phased installation
 - 1st "base" node peak of ~ 3.3 TF (halem = 3.2TF)
 - SIVO should get access within 2 weeks
 - General access is scheduled for early November
 - Follow-on nodes >= 2x performance of base node
 - Expect at least 2 such nodes in the next 6 months.
 - Halem to be decommissioned
 - Originally targeted January 1, 2007
 - Power/cooling mandate shutdown prior to 3rd node.
 - IBM GPFS filesystem

Discover Specs

- Linux Networks: Intel/Linux cluster
- 128 nodes connected by Infiniband
 - 5 racks (compare to ~80 racks for halem)
- Dual-core, Dual socket nodes "Demsey"
 - 4 cores/node (1 x halem)
 - 4 GM memory (2 x halem)
 - 3.2 Ghz (~3 x halem)
 - Smaller cache!
 - Unproven scalability within node for NASA apps.

New Data Portal

- Cluster dedicated to serving data in a flexible manner.
 - To be managed by individual projects
 - Little support from NCCS
- Replaces dirac for GMI products?
 - More available than dirac not dependent on other CXFS platforms
 - Data does not migrate to tape, but must be managed by groups.
 - Can add registration/authentication to process, but probably not in near future.
- Moving beyond FTP?
 - Web access
 - Common visualizations including thumbnails

Processing Met Fields

- Input data
 - 2 forecasts each day
 - Each forecast is 20 snapshots (5 days x 2)
 - Each forecast has ~50 fields (180x288x72)
 - 128 separate files migrated to varying tapes
 - Aggregate of ~ 250 GB / day
 - 1 year > 50 TB of data to process!
- Tape issues
 - At least one phase of processing requires all 128 files from tape.
 - 2-3 hours to assemble 1 days files
 - Some files do not exist.

Processing Met Fields (cont'd)

- Staging data
 - Without intervention data will migrate <u>back</u> to tape before processing completes.
 - Must move data to non-migrating filesystem.
 - Carefully manage available space (~ 1 TB workspace)
- Once data for a single day is staged, actual processing requires ~4 hours for each day.
 - Multiple steps with handcrafted scripts.
 - Differing steps require differing formats multiple stages to disk
- Overall process is fragile
 - Tape system is unreliable
 - Filesystems fill up
 - Missing data
 - Human error tedious and time-consuming

Improved workflow

- Partial automation
 - Some steps invoked when data is detected as available
 - Intermediate files are deleted when no longer needed.
 - Automatic registry of completed processing
- Parallelization
 - Multiple files are migrated from tape simultaneously.
 - 5 days processed in batch simultaneously.

Met Fields: Current Status

- Previous performance:
 - ~ 5 days processed per day.
- Current performance:
 - Theoretical ~ 40 days processed per day
 - Actual ~ 20 days processed per day
 - Far less human involvement than before.
- Further improvements?
 - Single coherent script that would require less intermediate representations.
 - Reduced requirement for processing 1 day "all-at-once".

Miscellaneous Items

- New NCCS allocation request
 - Large number of unused hours on Altix
 - Asked for ~ 50% increase on halem and same number on Altix
 - Will need to request more if new cluster is slow